
Rust 101
Small start for big language

How to learn new language

• What do we need this?
• Where can I use it?
• Code structure (how to compile ,release , test, etc)
• Variables
• Functions
• Loops
• Structure (object-oriented ? , functional programming ?)
• What are the simplifications? How can I use it the language better

?

Why do we need this?
• Memory Safety: Rust's ownership model, along with its borrowing and

lifetime rules, ensures memory safety without needing a garbage collector
• Concurrency: Rust provides powerful abstractions for dealing with

concurrency safely. Its type system and ownership rules help you write
concurrent code that is free from data races and other common pitfalls,
making your applications more robust and responsive.
• Performance: Rust offers performance comparable to that of C and C++

because it does not have a runtime or garbage collector
• Cross-platform Development: Rust supports cross-compilation, allowing

developers to compile programs for many different platforms from a single
codebase.
• Tooling: Rust comes with Cargo, its package manager, which also serves as a

build system. Cargo simplifies dependency management, building, testing,
and documentation, making the development process more efficient.

When should I prefer rust

- Systems programming
- Backend developing
- Embedded systems
- Networking & Concurrency
Not for :
- Enterprise application (like java frameworks)
- Front end development
- Scripting

Compiler

• Rustc

• Cargo (Packaging and build)

• Rustup

Lets Create Hello world

fn main() {
println!("Hello, world!");

}

Code structure

• /src for code
• /test can be used for tests or integreation tests. Test can be

defined in the source code too

Data types

Length Signed Unsigned
8-bit i8 u8
16-bit i16 u16
32-bit i32 u32
64-bit i64 u64
128-bit i128 u128
arch isize usize

Integer

Float : f32 and f64

Boolean : bool

Character : char

String : it has Object model and pointer model str and String

Flow Controls

• If - else if – else
• Loop - forever while
• While
• For and

